

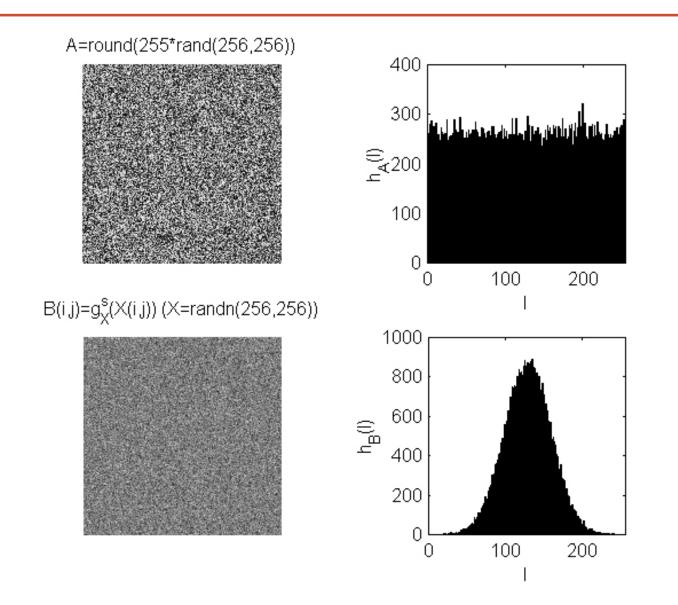
- Simple histogram based image segmentation and its limitations.
- Continuous and discrete amplitude random variables ^{properties} the histogram equalizing point function.
- Images as matrices containing " $N \times M$ random outcomes" of a random variable.
- The relationship between image histograms and sample probability mass functions of images.

Histogram Equalization

- $g_1(l) = \sum_{k=0}^l p_A(k) \Rightarrow g_1(l) g_1(l-1) = p_A(l) = \frac{h_A(l)}{NM} \ (l = 1, \dots, 255).$
- $g_A^e(l) = \text{round}(255g_1(l))$ is the histogram equalizing point function for the image A.
- $B(i,j) = g_A^e(A(i,j))$ is the histogram equalized version of A.
- In general, histogram equalization stretches/compresses an image such that:
 - Pixel values that occur frequently in \mathbf{A} occupy a bigger dynamic range in \mathbf{B} , i.e., get stretched and become more visible.
 - Pixel values that occur infrequently in A occupy a smaller dynamic range in B, i.e., get compressed and become less visible.
- Histogram equalization is not ideal, i.e., in general B will have a "flatter" histogram than A, but $p_B(l)$ is not guaranteed to be uniform (flat).

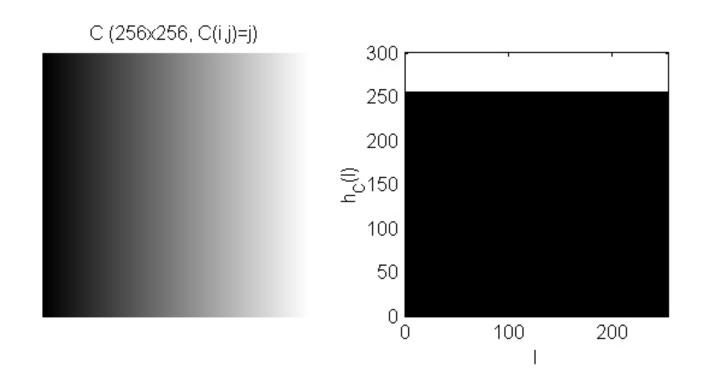
- A single outcome of a continuous amplitude uniform random variable $\chi \in [0, 1]$ in matlab: >> x = rand(1, 1);
- An $N \times M$ matrix of outcomes of a continuous amplitude uniform random variable $\chi \in [0, 1]$ in matlab: >> X = rand(N, M);
- An $N \times M$ image matrix of outcomes of a discrete amplitude uniform random variable $\Theta \in \{0, 1, \dots 255\}$ in matlab: >> A = round(255 * X);
- A single outcome of a continuous amplitude gaussian random variable χ ($\mu = 0, \sigma^2 = 1$) in matlab: >> x = randn(1, 1);
- An $N \times M$ matrix of outcomes of a continuous amplitude gaussian random variable χ ($\mu = 0, \sigma^2 = 1$) in matlab: >> X = randn(N, M);
- An $N \times M$ image matrix of outcomes of a discrete amplitude "gaussian" random variable $\Theta \in \{0, 1, \dots 255\}$: $A(i, j) = g_X^s(X(i, j))$.

Example



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Warning



• Remember, two totally different images may have very similar histograms.

- Given *images* A and B, using point processing we would like to generate an image C from A such that $h_C(l) \sim h_B(l)$, (l = 0, ..., 255).
- More generally, given an image A and a histogram $h_B(l)$ (or sample probability mass function $p_B(l)$), we would like to generate an image C such that $h_C(l) \sim h_B(l)$, (l = 0, ..., 255).
- Histogram matching/specification enables us to "match" the grayscale distribution in one image to the grayscale distribution in another image.

- We have already seen that for a continuous amplitude random variable χ with strictly increasing and continuous $F_{\chi}(x)$, the random variable $Y = F_{\chi}(\chi)$ has the uniform probability density/distribution function.
- *Equivalently*, for a continuous amplitude random variable $Y \in [0,1]$ which has the uniform probability density function, $\chi = F_{\chi}^{-1}(Y)$ has the probability density [distribution] function $f_{\chi}(x)$ [$F_{\chi}(x)$].

$$\chi [F_{\chi}(x)] \Rightarrow Y = F_{\chi}(\chi) [uniform]$$

 $Y [uniform] \Rightarrow \chi = F_{\chi}^{-1}(Y) [F_{\chi}(x)]$

• Now, assume we have a continuous amplitude random variable Z with strictly increasing and continuous $F_Z(z)$. Then:

$$Y \text{ (uniform)} \Rightarrow W = F_Z^{-1}(Y) [F_Z(w)]$$
 (1)

but we can generate the required uniform random variable Y from χ via $Y = F_{\chi}(\chi)$ which means W can be generated from χ via:

$$W = F_Z^{-1}(Y) = F_Z^{-1}(F_\chi(\chi))$$
(2)

- Given a continuous amplitude random variable χ with strictly increasing and continuous $F_{\chi}(x)$, let $F_Z(z)$ be the *specified* distribution $(F_Z(z)$ strictly increasing and continuous).
- Then, $W = F_Z^{-1}(F_{\chi}(\chi))$ is a random variable that is a function of χ with $F_W(w) = F_Z(w)$.
- For discrete amplitude random variables this derivation does not work exactly in general. However, similar to the histogram equalizing point function, we will generate a point function that operates on an image A to "match" its histogram to that of image B.

- In general we will not be able to calculate inverses of the distribution functions of discrete amplitude random variables.
- Let $p_A(l)$, $p_B(l)$ (l = 0, ..., 255) be the sample probability mass functions of images A and B respectively.
- Let $g_1(l) = \sum_{k=0}^{l} p_A(k)$ and $g_2(l) = \sum_{k=0}^{l} p_B(k)$.
- Generate the "histogram matched" C as $C(i, j) = g_3(A(i, j))$ where:

$$g_3(l) = m \quad (m \in \{0, 1, \dots, 255\})$$

$$m = \min\{k | g_2(k) - g_1(l) \ge 0, \ k = 0, \dots, 255\}$$

$$(3)$$

• Assuming g_2 and g_1 are precomputed:

>> for
$$i = 1:256$$

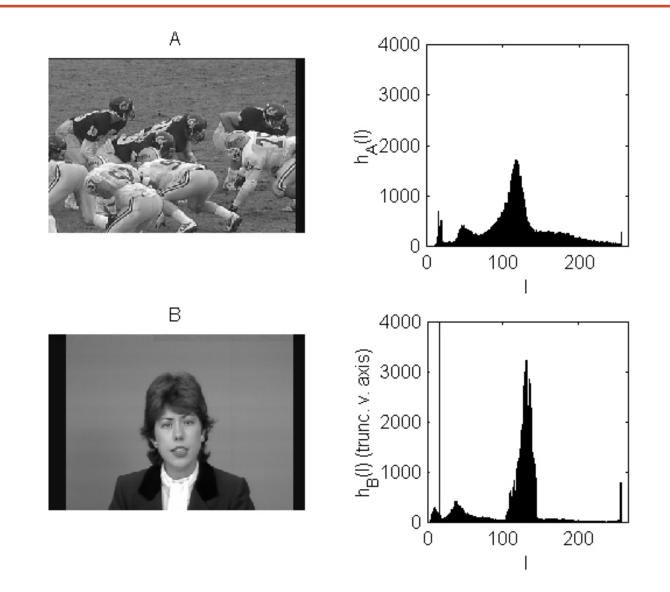
 $g3(i) = 256 - sum(g2 >= g1(i));$
end;

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Example 7.1 in textbook (P. 244) in "our notation":

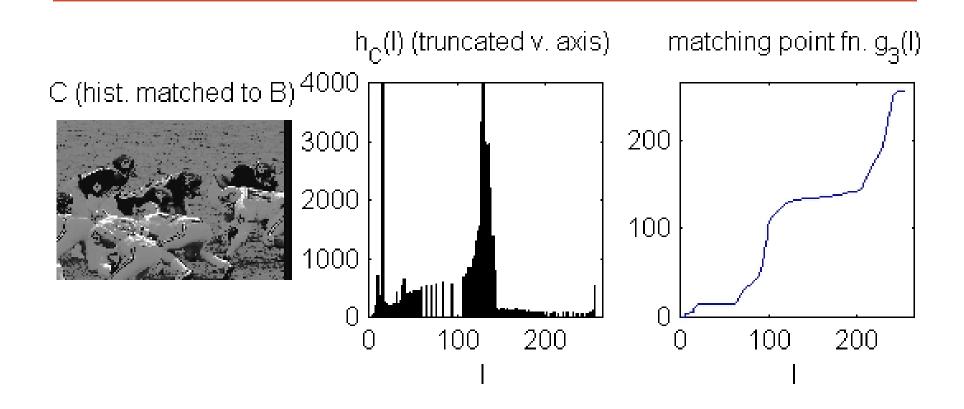
l	$p_A(l)$	$g_1(l)$	$g_3(l) = \min\{k g_2(k) - g_1(l) \ge 0\}$	$g_2(k)$	$p_B(k)$	k
0	0.25	0.25	1	0	0	0
1	0.25	0.5	1	0.5	0.5	1
2	0.25	0.75	2	1.0	0.5	2
3	0.25	1.0	2	1.0	0	3

Example II - Histogram Matching Different Images

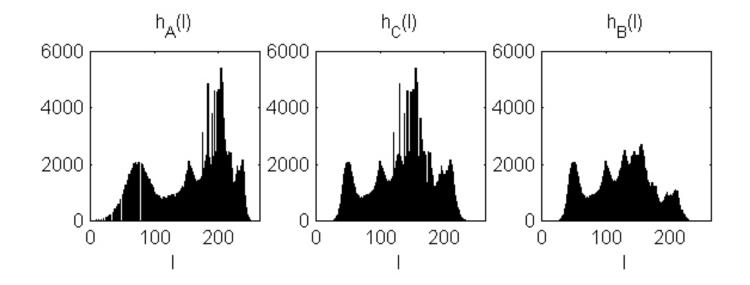


© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 11

Example II - contd.



Example III - "Undoing" via Histogram Specification



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Quantization

- Let $t_n \in \{0, 1, \dots, 255\}$ denote a sequence of thresholds $(n = 0, \dots, P-1)$.
- Consider the *P* "half-open, discrete intervals" $R_n = [t_n, t_{n+1})$ $(t_0 = 0, t_P = 256).$
- Let $r_n \in R_n$ be the reproduction level of the interval R_n .
- Define the quantizing point function or the P-level quantizer Q(l) in terms of the R_n , r_n (or equivalently in terms of t_n , r_n) as follows:

$$Q(l) = \{ r_k | l \in R_k, \ k = 0, \dots, P - 1 \}$$
(4)

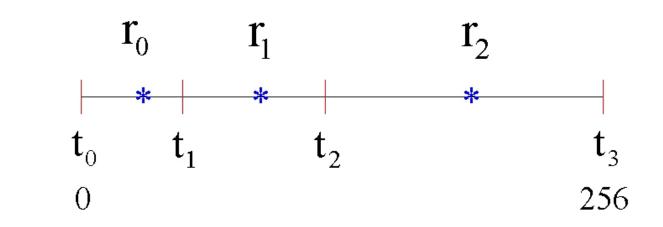
i.e., $l \in R_k \Leftrightarrow Q(l) = r_k$.

• Quantizing an image A in matlab:

>>
$$Q$$
 = zeros(256, 1); $x = (0:255)';$
>> for $i = 1: P$
 $Q = Q + r(i) * ((x >= t(i))\&(x < t(i + 1)))$
end; $\% t(P + 1) = 256$
>> $B = Q(A + 1);$

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 14

The Interval Partition View of a Quantizer

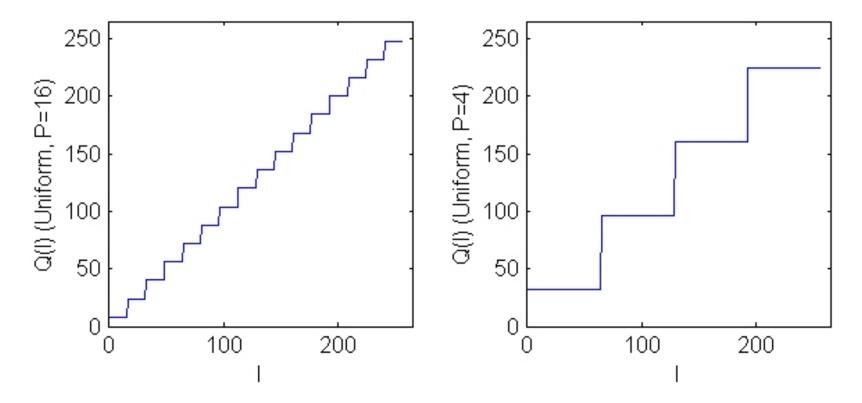


• $R_n = [t_n, t_{n+1}).$

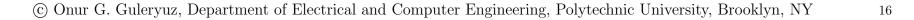
© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 15

Uniform Quantization

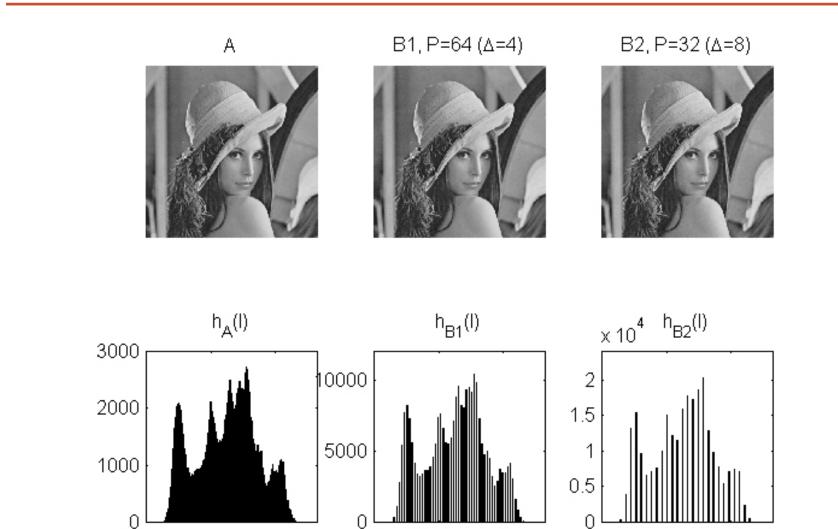
- In uniform quantization $P = 256/\Delta$, $t_{n+1} t_n = \Delta$, $\forall n$ and $r_n = \frac{t_n + t_{n+1}}{2}$.
- Δ is the stepsize of the uniform quantizer $(r_n = n\Delta + \Delta/2)$.



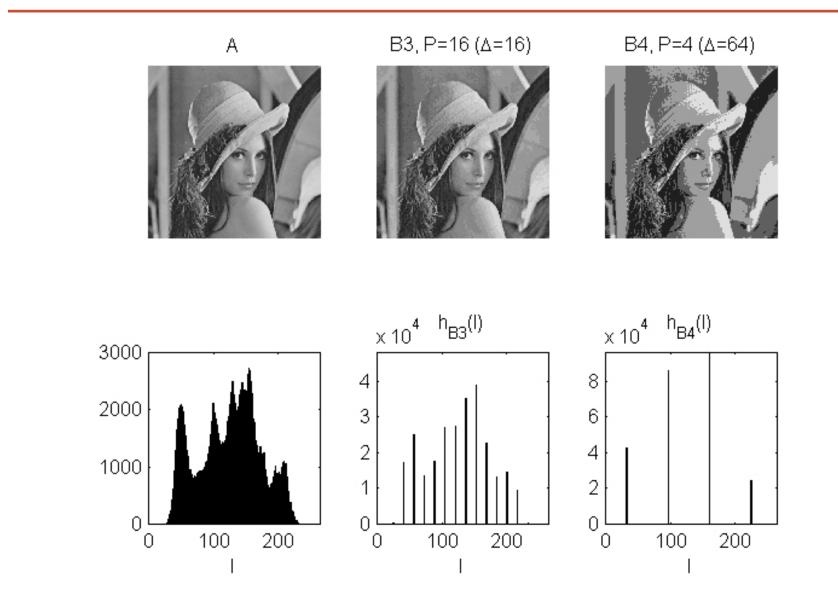
Easy uniform quantization: >> B = delta * floor(A/delta) + delta/2;



Example



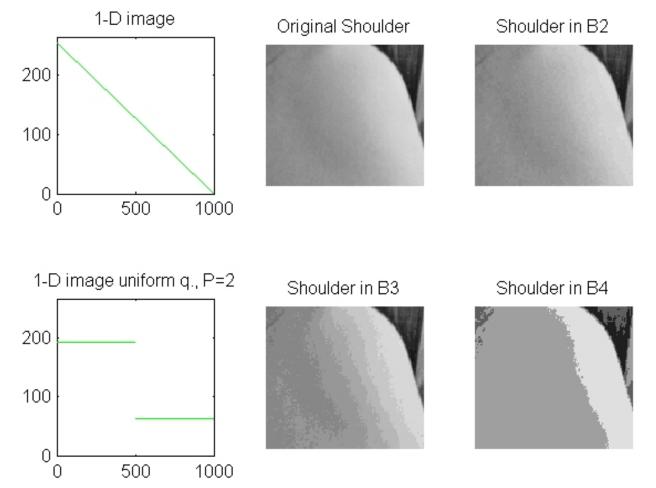
Example - contd.



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Quantization Artifacts - False Contours

False Contours or "False Edges" on a 1-D image and earlier example:



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Quantization Statistics

- The quantization error matrix is defined as E = A Q(A).
- The sample mean squared quantization error (MSQE) is:

$$MSQE = \frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (E(i,j))^2}{NM}$$

$$= \frac{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} (A(i,j) - Q(A(i,j)))^2}{NM}$$

$$= \sum_{l=0}^{255} (l - Q(l))^2 p_A(l)$$
(5)

Example

For the earlier example:

Δ	Quantized Image	MSQE
4	B1	1.50
8	B2	5.49
16	B3	22.18
64	B4	334.77

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

- We would like to design the R_n , r_n (or equivalently t_n , r_n) such that the MSQE is as small as possible.
- Repeating Equations 4 and 6:

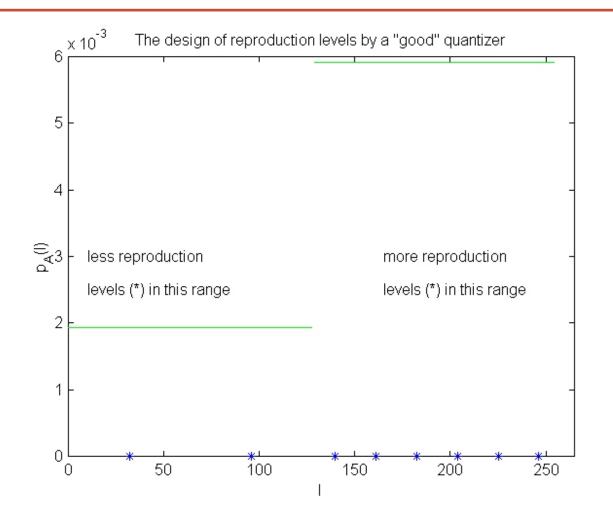
$$Q(l) = \{r_k | l \in R_k, \ k = 0, \dots, P-1\}$$

MSQE = $\sum_{l=0}^{255} (l - Q(l))^2 p_A(l)$

we can make the following important observations assuming P is fixed:

- Around ranges of l where $p_A(l)$ is large, a good quantizer should have many small R_n , i.e., since we can have at most P discrete intervals, most of these intervals should be around ranges of l where $p_A(l)$ is large.
- Equivalently, a good quantizer should not "waste" many reproduction levels around ranges of l where $p_A(l)$ is *small*.

Example



The reproduction levels * are shown in the interval partition view.

Designing the Thresholds for Given Reproduction Levels

- Assume P is given and we "picked" the reproduction levels r_n in locations where $p_A(l)$ is large.
- How do we *optimally* pick the thresholds t_n ?
- By definition $r_{n-1} < t_n \le r_n$ except for $t_0 = 0$, $t_{P+1} = 255$.
- Suppose $r_{n-1} < l \le r_n$. Let $d_n = (r_{n-1} + r_n)/2$ be the midpoint. Then in order to minimize MSQE, Q(l) must be:

$$Q(l) = \begin{cases} r_{n-1} & l < d_n \\ r_n & l \ge d_n \end{cases}$$
(7)

• For MSQE optimality

$$t_n = \operatorname{round}(\frac{r_{n-1} + r_n}{2}) \tag{8}$$

• Note that this result is *independent* of $p_A(l)$ and only depends on r_n .

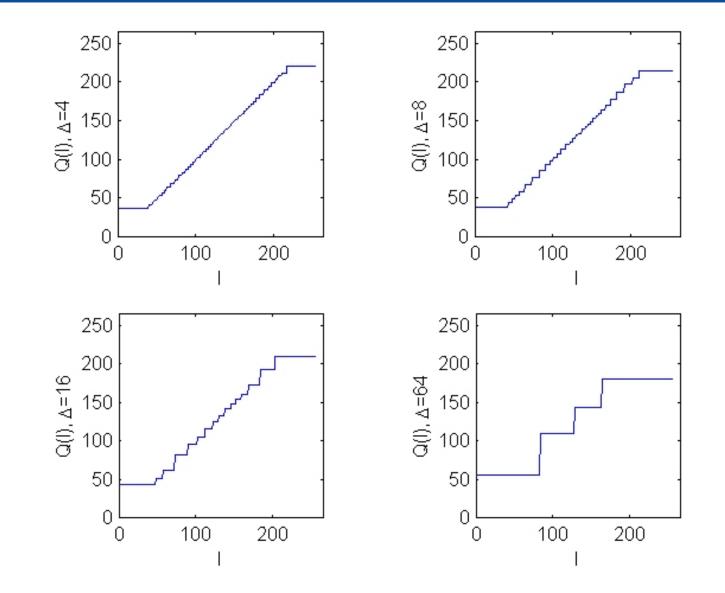
Companding

- Given the r_n we know how to choose the t_n .
- We also know that we should pick r_n close apart where $p_A(l)$ is large and far apart where $p_A(l)$ is small.
- Assume $p_A(l)$ is uniform. Then, clearly, we can pick r_n "uniformly", i.e., use the r_n that correspond to a uniform quantizer.
- In general $p_A(l)$ is not uniform, but "hopefully" $p_B(l)$ for $B(i,j) = g_A^e(A(i,j))$ is.
- Let $g_1(l) = \sum_{k=0}^{l} p_A(k)$. Let $\Delta = 256/P$. pick $r_n \ (n = 0, \dots, P-1)$ via:

$$r_n = \min\{k|255g_1(k) - (n\Delta + \Delta/2) \ge 0, \ k = 0, \dots, 255\}$$
(9)

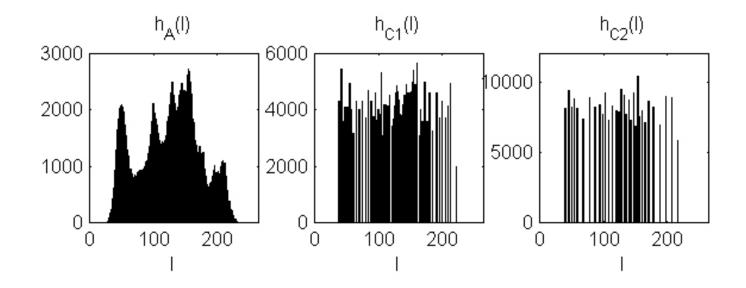
(Note the similarity to Equation 4 as we are again calculating a "discrete inverse")

Companding Quantizer Point Functions



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 25

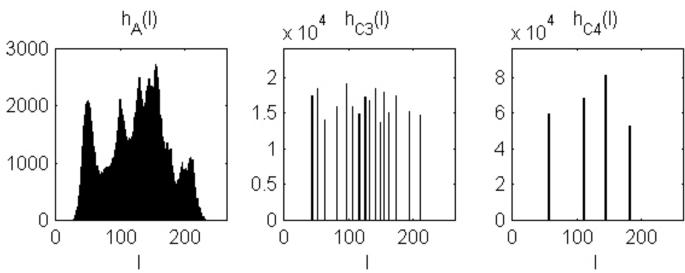
Example



© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

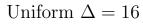
Example - contd.





© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY

Example - contd.



Δ	Companded Image	MSQE
4	C1	1.56
8	C2	4.28
16	C3	13.84
64	C4	186.27

Companded $\Delta = 16$

28

Compare to uniform quantization results.

- In this lecture we learnt how to generate random images.
- We learnt about histogram matching which enabled us to "match" the histogram of a given image to another image's histogram.
- We learnt how to calculate the "inverses" of discrete functions.
- We learnt about quantization, simple uniform quantization and companding.
 - Calculating errors.
 - Simple quantization statistics.
 - Choosing thresholds optimally.
 - Please read the textbook pages 243-244, 99-118.

Homework IV

- 1. Generate a 256×256 matrix **A** of outcomes of a continuous amplitude Gaussian random variable with $\mu = 2$ and $\sigma^2 = 3$. Calculate its sample mean and variance. Note that **A** is not an image matrix. Normalize **A** to obtain **B**. Calculate the sample mean, variance, probability mass function as well as the histogram of **B**. Show **B** and all calculated quantities.
- 2. Using histogram modification, modify your image so that the resulting image has a histogram that matches $h_B(l)$ as in 1 above. Show your image, the modified image, their histograms and the matching point function. Briefly compare the modified image's histogram to $h_B(l)$.
- 3. Do the processing I did in the "undoing example" on your image.
- 4. Uniform quantize your image using $\Delta = 4, 8, 16, 64$. Show the quantized image, its histogram and MSQE in each case.
- 5. Compand your image using $\Delta = 4, 8, 16, 64$. Show the quantized image, its histogram and MSQE in each case. Compare the results to those obtained in 4.
- 6. $p_A(l) = [.1, 0, .3, .2, 0, 0, .3, .1]$ and $p_B(k) = [.2, 0, 0, .1, .4, .3]$ for two *images* **A** and **B**. Calculate a point function g(l) such that C(i, j) = g(A(i, j)) has histogram $h_C(l)$ that "matches" $h_B(l)$. Assume all images have a total of 10 pixels. Calculate the histogram $h_C(l)$.

References

[1] A. K. Jain, Fundamentals of Digital Image Processing. Englewood Cliffs, NJ: Prentice Hall, 1989.