
Summary of Lecture 3

• Simple histogram based image segmentation and its limitations.

• Continuous and discrete amplitude random variables properties⇒ the his-
togram equalizing point function.

• Images as matrices containing “N ×M random outcomes” of a ran-
dom variable.

• The relationship between image histograms and sample probability
mass functions of images.
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Histogram Equalization

• g1(l) =
∑l

k=0 pA(k) ⇒ g1(l)− g1(l − 1) = pA(l) = hA(l)
NM (l = 1, . . . , 255).

• ge
A(l) = round(255g1(l)) is the histogram equalizing point function for the

image A.

• B(i, j) = ge
A(A(i, j)) is the histogram equalized version of A.

• In general, histogram equalization stretches/compresses an image such
that:

– Pixel values that occur frequently in A occupy a bigger dynamic range in B, i.e., get

stretched and become more visible.

– Pixel values that occur infrequently in A occupy a smaller dynamic range in B, i.e., get

compressed and become less visible.

• Histogram equalization is not ideal, i.e., in general B will have a
“flatter” histogram than A, but pB(l) is not guaranteed to be uniform
(flat).
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Random Images - Images of White Noise

• A single outcome of a continuous amplitude uniform random variable
χ ∈ [0, 1] in matlab: >> x = rand(1, 1);

• An N × M matrix of outcomes of a continuous amplitude uniform
random variable χ ∈ [0, 1] in matlab: >> X = rand(N, M);

• An N ×M image matrix of outcomes of a discrete amplitude uniform
random variable Θ ∈ {0, 1, . . . 255} in matlab: >> A = round(255 ∗X);

• A single outcome of a continuous amplitude gaussian random variable
χ (µ = 0, σ2 = 1) in matlab: >> x = randn(1, 1);

• An N × M matrix of outcomes of a continuous amplitude gaussian
random variable χ (µ = 0, σ2 = 1) in matlab: >> X = randn(N,M);

• An N×M image matrix of outcomes of a discrete amplitude “gaussian”
random variable Θ ∈ {0, 1, . . . 255}: A(i, j) = gs

X(X(i, j)).
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Example
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Warning

• Remember, two totally different images may have very similar his-
tograms.
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Histogram Matching - Specification

• Given images A and B, using point processing we would like to generate
an image C from A such that hC(l) ∼ hB(l), (l = 0, . . . , 255).

• More generally, given an image A and a histogram hB(l) (or sample proba-

bility mass function pB(l)), we would like to generate an image C such that
hC(l) ∼ hB(l), (l = 0, . . . , 255).

• Histogram matching/specification enables us to “match” the grayscale
distribution in one image to the grayscale distribution in another im-
age.
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Derivation for Continuous Amplitude R.V.s

• We have already seen that for a continuous amplitude random variable
χ with strictly increasing and continuous Fχ(x), the random variable
Y = Fχ(χ) has the uniform probability density/distribution function.

• Equivalently, for a continuous amplitude random variable Y ∈ [0, 1] which
has the uniform probability density function, χ = F−1

χ (Y ) has the prob-
ability density [distribution] function fχ(x) [Fχ(x)].

χ [Fχ(x)] ⇒ Y = Fχ(χ) [uniform]

Y [uniform] ⇒ χ = F−1
χ (Y ) [Fχ(x)]

• Now, assume we have a continuous amplitude random variable Z with
strictly increasing and continuous FZ(z). Then:

Y (uniform) ⇒ W = F−1
Z (Y ) [FZ(w)] (1)

but we can generate the required uniform random variable Y from χ

via Y = Fχ(χ) which means W can be generated from χ via:

W = F−1
Z (Y ) = F−1

Z (Fχ(χ)) (2)
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Main Result

• Given a continuous amplitude random variable χ with strictly increas-
ing and continuous Fχ(x), let FZ(z) be the specified distribution (FZ(z)

strictly increasing and continuous).

• Then, W = F−1
Z (Fχ(χ)) is a random variable that is a function of χ with

FW (w) = FZ(w).

• For discrete amplitude random variables this derivation does not work
exactly in general. However, similar to the histogram equalizing point
function, we will generate a point function that operates on an image
A to “match” its histogram to that of image B.
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Algorithm

• In general we will not be able to calculate inverses of the distribution
functions of discrete amplitude random variables.

• Let pA(l), pB(l) (l = 0, . . . , 255) be the sample probability mass functions
of images A and B respectively.

• Let g1(l) =
∑l

k=0 pA(k) and g2(l) =
∑l

k=0 pB(k).

• Generate the “histogram matched” C as C(i, j) = g3(A(i, j)) where:

g3(l) = m (m ∈ {0, 1, . . . , 255}) (3)

m = min{k|g2(k)− g1(l) ≥ 0, k = 0, . . . , 255}

• Assuming g2 and g1 are precomputed:

>> for i = 1 : 256

g3(i) = 256− sum(g2 >= g1(i));

end;
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Example I

Example 7.1 in textbook (P. 244) in “our notation”:

l pA(l) g1(l) g3(l) = min{k|g2(k)− g1(l) ≥ 0} g2(k) pB(k) k

0 0.25 0.25 1 0 0 0
1 0.25 0.5 1 0.5 0.5 1
2 0.25 0.75 2 1.0 0.5 2
3 0.25 1.0 2 1.0 0 3
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Example II - Histogram Matching Different Images
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Example II - contd.
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Example III - “Undoing” via Histogram Specification
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Quantization

• Let tn ∈ {0, 1, . . . , 255} denote a sequence of thresholds (n = 0, . . . , P − 1).

• Consider the P “half-open, discrete intervals” Rn = [tn, tn+1)

(t0 = 0, tP = 256).

• Let rn ∈ Rn be the reproduction level of the interval Rn.

• Define the quantizing point function or the P-level quantizer Q(l) in
terms of the Rn, rn (or equivalently in terms of tn, rn) as follows:

Q(l) = {rk|l ∈ Rk, k = 0, . . . , P − 1} (4)

i.e., l ∈ Rk ⇔ Q(l) = rk.

• Quantizing an image A in matlab:

>> Q = zeros(256, 1); x = (0 : 255)′;

>> for i = 1 : P

Q = Q + r(i) ∗ ((x >= t(i))&(x < t(i + 1)));

end; % t(P + 1) = 256

>> B = Q(A + 1);
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The Interval Partition View of a Quantizer

• Rn = [tn, tn+1).
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Uniform Quantization

• In uniform quantization P = 256/∆, tn+1 − tn = ∆, ∀n and rn = tn+tn+1
2 .

• ∆ is the stepsize of the uniform quantizer (rn = n∆ + ∆/2).

Easy uniform quantization: >> B = delta ∗ floor(A/delta) + delta/2;
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Example
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Example - contd.
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Quantization Artifacts - False Contours

False Contours or “False Edges” on a 1-D image and earlier example:
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Quantization Statistics

• The quantization error matrix is defined as E = A−Q(A).

• The sample mean squared quantization error (MSQE) is:

MSQE =

∑N−1
i=0

∑M−1
j=0 (E(i, j))2

NM
(5)

=

∑N−1
i=0

∑M−1
j=0 (A(i, j)−Q(A(i, j)))2

NM

=
255∑

l=0
(l −Q(l))2pA(l) (6)

Example

For the earlier example:

∆ Quantized Image MSQE

4 B1 1.50

8 B2 5.49

16 B3 22.18

64 B4 334.77
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Designing Good Quantizers

• We would like to design the Rn, rn (or equivalently tn, rn) such that
the MSQE is as small as possible.

• Repeating Equations 4 and 6:

Q(l) = {rk|l ∈ Rk, k = 0, . . . , P − 1}
MSQE =

255∑

l=0
(l −Q(l))2pA(l)

we can make the following important observations assuming P is fixed:

– Around ranges of l where pA(l) is large, a good quantizer should
have many small Rn, i.e., since we can have at most P discrete intervals, most

of these intervals should be around ranges of l where pA(l) is large.

– Equivalently, a good quantizer should not “waste” many repro-
duction levels around ranges of l where pA(l) is small.
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Example

The reproduction levels ∗ are shown in the interval partition view.
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Designing the Thresholds for Given Reproduction Levels

• Assume P is given and we “picked” the reproduction levels rn in loca-
tions where pA(l) is large.

• How do we optimally pick the thresholds tn ?

• By definition rn−1 < tn ≤ rn except for t0 = 0, tP+1 = 255.

• Suppose rn−1 < l ≤ rn. Let dn = (rn−1 + rn)/2 be the midpoint. Then in
order to minimize MSQE, Q(l) must be:

Q(l) =





rn−1 l < dn

rn l ≥ dn

(7)

• For MSQE optimality

tn = round(
rn−1 + rn

2
) (8)

• Note that this result is independent of pA(l) and only depends on rn.
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Companding

• Given the rn we know how to choose the tn.

• We also know that we should pick rn close apart where pA(l) is large
and far apart where pA(l) is small.

• Assume pA(l) is uniform. Then, clearly, we can pick rn “uniformly”,
i.e., use the rn that correspond to a uniform quantizer.

• In general pA(l) is not uniform, but “hopefully” pB(l) for B(i, j) =

ge
A(A(i, j)) is.

• Let g1(l) =
∑l

k=0 pA(k). Let ∆ = 256/P . pick rn (n = 0, . . . , P − 1) via:

rn = min{k|255g1(k)− (n∆ + ∆/2) ≥ 0, k = 0, . . . , 255} (9)

(Note the similarity to Equation 4 as we are again calculating a “discrete inverse”)
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Companding Quantizer Point Functions
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Example
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Example - contd.
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Example - contd.

Uniform ∆ = 16 Companded ∆ = 16

∆ Companded Image MSQE

4 C1 1.56

8 C2 4.28

16 C3 13.84

64 C4 186.27

Compare to uniform quantization results.
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Summary

• In this lecture we learnt how to generate random images.

• We learnt about histogram matching which enabled us to “match”
the histogram of a given image to another image’s histogram.

• We learnt how to calculate the “inverses” of discrete functions.

• We learnt about quantization, simple uniform quantization and companding.

– Calculating errors.

– Simple quantization statistics.

– Choosing thresholds optimally.

– Please read the textbook pages 243-244, 99-118.
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Homework IV

1. Generate a 256× 256 matrix A of outcomes of a continuous amplitude Gaussian random variable

with µ = 2 and σ2 = 3. Calculate its sample mean and variance. Note that A is not an image

matrix. Normalize A to obtain B. Calculate the sample mean, variance, probability mass function

as well as the histogram of B. Show B and all calculated quantities.

2. Using histogram modification, modify your image so that the resulting image has a histogram

that matches hB(l) as in 1 above. Show your image, the modified image, their histograms and

the matching point function. Briefly compare the modified image’s histogram to hB(l).

3. Do the processing I did in the “undoing example” on your image.

4. Uniform quantize your image using ∆ = 4, 8, 16, 64. Show the quantized image, its histogram and

MSQE in each case.

5. Compand your image using ∆ = 4, 8, 16, 64. Show the quantized image, its histogram and MSQE

in each case. Compare the results to those obtained in 4.

6. pA(l) = [.1, 0, .3, .2, 0, 0, .3, .1] and pB(k) = [.2, 0, 0, .1, .4, .3] for two images A and B. Calculate

a point function g(l) such that C(i, j) = g(A(i, j)) has histogram hC(l) that “matches” hB(l).

Assume all images have a total of 10 pixels. Calculate the histogram hC(l).
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