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Summary of Lecture 3

e Simple histogram based image segmentation and its limitations.

e Continuous and discrete amplitude random variables "™ the his-
togram equalizing point function.

e Images as matrices containing “N x M random outcomes” of a ran-
dom variable.

e The relationship between image histograms and sample probability
mass functions of images.

© Onur G. Guleryuz, Department of Electrical and Computer Engineering, Polytechnic University, Brooklyn, NY 1



Histogram Equalization

 0i(l) = =g pa(k) = o) — (1 = 1) = pall) = 7 (1=1,...,255).
e g5(1) = round(255¢:(1)) is the histogram equalizing point function for the
Image A.

e B(i,7) = ¢5(A(i, 7)) is the histogram equalized version of A.

e In general, histogram equalization stretches/compresses an image such
that:

— Pixel values that occur frequently in A occupy a bigger dynamic range in B, i.e., get

stretched and become more visible.

— Pixel values that occur infrequently in A occupy a smaller dynamic range in B, i.e., get

compressed and become less visible.

e Histogram equalization is not ideal, i.e., in general B will have a
“flatter” histogram than A, but pp(l) is not guaranteed to be uniform
(flat).
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Random Images - Images of White Noise

e A single outcome of a continuous amplitude uniform random variable
x €10,1] in matlab: >> 2 =rand(1,1);

e An N x M matrix of outcomes of a continuous amplitude uniform
random variable y € [0,1] in matlab: >> X = rand(V, M);

e An N x M image matrix of outcomes of a discrete amplitude uniform
random variable © € {0,1,...255} in matlab: >> A = round(255 * X);

e A single outcome of a continuous amplitude gaussian random variable
X (u=0,02=1) in matlab: >> 2 = randn(1, 1);

e An N x M matrix of outcomes of a continuous amplitude gaussian
random variable x (x=0,0?=1) in matlab: >> X = randn(N, M);

e An N xM image matrix of outcomes of a discrete amplitude “gaussian”
random variable © € {0,1,...255}: A(4,j) = g% (X (4, 7).
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Example

A=roundi{ 255 rand{ 256 256))
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Warning

C{296x256, Cl =)
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e Remember, two totally different images may have very similar his-
tograms.
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Histogram Matching - Specification

e Given images A and B, using point processing we would like to generate
an image C from A such that h¢(l) ~ hp(l), (I=0,...,255).

e More generally, given an image A and a histogram hp(l) (or sample proba-
bility mass function pp(1)), we would like to generate an image C such that
he(l) ~ hp(l), (1=0,...,255).

e Histogram matching/specification enables us to “match” the grayscale
distribution in one image to the grayscale distribution in another im-
age.
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Derivation for Continuous Amplitude R.V.s

e \WWe have already seen that for a continuous amplitude random variable
x with strictly increasing and continuous F,(z), the random variable
Y = F\.(x) has the uniform probability density/distribution function.

e Equivalently, for a continuous amplitude random variable Y < [0, 1] which
has the uniform probability density function, x = F/'(Y) has the prob-
ability density [distribution] function £, (z) [F\(z)].

¥ [F(@)] = Y = F(x) [uiforn]
Y [uniform] = X = Fx_l(Y) [FX(QU)]
e Now, assume we have a continuous amplitude random variable Z with
strictly increasing and continuous Fz(z). Then:
Y (uniform) = W = Fz_l(Y) [Fz(w)] (1)

but we can generate the required uniform random variable Y from y
via Y = F,(x) which means W can be generated from y via:

W =F;'(Y)=F;'(F(x)) (2)
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Main Result

e Given a continuous amplitude random variable x with strictly increas-
ing and continuous F,(z), let Fz(z) be the specified distribution (Fy(z)

strictly increasing and continuous).

e Then, W = F;'(F.(x)) is a random variable that is a function of x with
Fw(w) = Fz(w)

e For discrete amplitude random variables this derivation does not work
exactly in general. However, similar to the histogram equalizing point

function, we will generate a point function that operates on an image
A to "match” its histogram to that of image B.
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o
Algorithm

e In general we will not be able to calculate inverses of the distribution
functions of discrete amplitude random variables.

o Let pa(l), pp(l) (I=0,...,255) be the sample probability mass functions
of images A and B respectively.

o Let gi(l) =} _opa(k) and gs(1) = =j_pp(k).
e Generate the “histogram matched” C as C(i,j) = g3(A(i, j)) where:

gs(l) = m (med{0,1,...,255}) (3)
m = min{k|g2(k) — g1(l) >0, k=0,...,255}

e Assuming ¢, and g, are precomputed:

>> for 1 =1:256
g3(1) = 256 — sum(g2 >= g1(1));

end;
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Note that C is automatically an image matrix due to the definition of the matching point function.


=N

Example |

Example 7.1 in textbook (P. 244) in “our notation":
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L pall) | g1(l) | g5(1) = min{k[ga(k) — g1(1) = 0} | ga(k) | p(K) | K
0/0.25/0.25 1 0 0 |0
110.25] 0.5 1 05 05 |1
210.25/0.75 2 1.0 0.5 |2
310.25] 1.0 2 10 0 |3
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Example Il - Histogram Matching Different Images
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Example Il - contd.

hC(I) (truncated v, axis) matching point fn. QSI[“I

C (hist. matched to B) 400U
200
100
0 0
0 100 200 0 100 200
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“Example 11l - “Undoing” via Histogram Specification

A (log10 of Lenna)  (hist. matched to B)
. B .Y ! ;

(1) (1)
GO0 EO00 GO0
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0 0 0

iy 100 200 i 100 200 0 100 200
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Quantization

o Lett,€{0,1,...,255} denote a sequence of thresholds (n =0,..., P —1).

o Consider the P “half-open, discrete intervals” R, = [t,,t,.1)
(ty =0, tp = 256).

o Let 7, € R, be the reproduction level of the interval R,.

e Define the quantizing point function or the P-level quantizer Q(i) in
terms of the R,, r, (or equivalently in terms of ¢,, r,) as follows:

QU)={rll € Ry, k=0,....P—1} (4)
l.e., l € R, & Q(l) = .
e Quantizing an image A in matlab:
>> Q= zeros(256,1); x = (0:255)"
>> for 1=1:P

Q = Q+ (i) * (& >= ti)&(w < (i +1)));
end; % t(P+1) =256
>> B =Q(A+1);
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The Interval Partition View of a Quantizer
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Uniform Quantization

e In uniform quantization P =256/A, t,.1 —t, = A, Vn and r, = 2t

2

e A is the stepsize of the uniform quantizer (r, = nA + A/2).

250 250 |
© 200 < 200
A o
= 150 £ 150
2 2
S 100} 5 100
3 50} 50l
0 - - 0 - -
0 100 200 0 100 200

| |
Easy uniform quantization: >> B = delta * floor(A/delta) + delta/2;
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Example

B1, P=64 (A=4] B2 P=32 (A=8]
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Example - contd.

B3, P=16 (A=16) B4, P=4 (A=64)

) 1[]4 hEE(I) " 1[]4 hEM(I]I
2000
4 o]
2000 5 .
1000 2 &
AR
0 0 0
] 100 200 0 100 200 0 100 200
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Quantization Artifacts - False Contours

False Contours or “False Edges” on a 1-D image and earlier example:

1-D image Original Shoulder Shoulder in B2
200 9 j 1 . ‘
100 3 |
’0 500 1000 |
1-D image uniform q., P=2 Shoulder in B2 Shoulder in B4
200 | '
100 ‘. :
DU A00 1000
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Quantization Statistics

e The quantization error matrix is defined as E= A — Q(A).

e The sample mean squared quantization error (MSQE) is:
Cito' Sjto (E(i,5))°
NM
oo 210 (A 5) — QUAG, 1))
NM
255

= Y (1 —Q))*pa(l)

[=0

MSQE =

Example

For the earlier example:

A | Quantized Image | MSQE
4 B1 1.50
8 B2 5.49
16 B3 22.18
64 B4 334.77
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Designing Good Quantizers

e We would like to design the R,, r, (or equivalently t,, r,) such that
the MSQE is as small as possible.

e Repeating Equations [4] and [/

Q) = {mll€ Ry, k=0,....P—1}
MSQE = 3 (1 — Q) pall)

=0
we can make the following important observations assuming P is fixed:
— Around ranges of I where py(i) is large, a good quantizer should

have many small R,,, ie., since we can have at most P discrete intervals, most

of these intervals should be around ranges of [ where py4(l) is large.

— Equivalently, a good quantizer should not “waste” many repro-
duction levels around ranges of | where p,(l) is small.
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Example

v 10'3 The design of reproduction levels by a "good" quantizer

(

less reproduction more reproduction .

lewels () inthis range lewvels () inthis range

0 —L L —L—%
0 S0 100 150

¥ ¥

I* *I
200 250

The reproduction levels x are shown in the interval partition view.
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Designing the Thresholds for Given Reproduction Levels

e Assume P is given and we “picked” the reproduction levels r, in loca-
tions where p4(1) is large.

e How do we optimally pick the thresholds ¢, ?
e By definition r,_; < t, <, except for ty =0, tp, = 255.

e Suppose r,_; <1 <r,. Letd, = (r,_1 +r,)/2 be the midpoint. Then in
order to minimize MSQE, Q(I) must be:

Tn—1 l<dn
o L >dy

Q) = (7)

o For MSQE optimality
Tn—1+Tn

o ®)

e Note that this result is independent of ps(I) and only depends on r,,.

t, = round(
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s
Companding

e Given the r, we know how to choose the t,.

e We also know that we should pick r, close apart where p,(l) is large
and far apart where p4(l) is small.

o Assume p4(1) is uniform. Then, clearly, we can pick r, “uniformly”,
I.e., use the r, that correspond to a uniform quantizer.

o In general py(l) is not uniform, but “hopefully” pp(l) for B(i,j) =
ga(A(i, 7)) Is.
o Let gi(1) =i _opalk). Let A=256/P. pick r, (n=0,...,P—1) via:
rn, = min{k|255¢1(k) — (RA+A/2) >0, k=0,...,255} (9)

(Note the similarity to Equation [l as we are again calculating a “discrete inverse”)
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Companding Quantizer Point Functions

0 - - 0 - -
0 100 200 0 100 200
| |
250 ' 250
200 200
o =
173_150 EHU
5 100 = 100
50 50
0 - - 0 - -
0 100 200 0 100 200
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Example

C1 {companded A=4) 2 icompanded A=8)

Nesll)
3000 GO0D
10000
2000 4000
1000 2000 2000
0 0 0
0 100 200 0 100 200 0 100 200
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Example - contd.

A, C3 (companded A=16) Cd {companded A=E64)

h il h il
w10 Meal w10 Mca
3000
7 5
2000 5 :
1000 1 4
05 5
0 0 0
0 100 200 0 100 200 0 100 200
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Example - contd.

Uniform A = 16 Companded A = 16
A | Companded Image | MSQE
4 C1 1.56
8 C2 4.28 Compare to uniform quantization results.
16 C3 13.84
64 C4 186.27
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Summary

e In this lecture we learnt how to generate random images.

e We learnt about histogram matching which enabled us to “match”
the histogram of a given image to another image’s histogram.

e We learnt how to calculate the “inverses’ of discrete functions.
e We learnt about quantization, simple uniform quantization and companding.

— Calculating errors.

— Simple quantization statistics.

— Choosing thresholds optimally.

— Please read the textbook pages 243-244, 99-118.
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Homework IV

1. Generate a 256 x 256 matrix A of outcomes of a continuous amplitude Gaussian random variable
with p = 2 and 02 = 3. Calculate its sample mean and variance. Note that A is not an image
matrix. Normalize A to obtain B. Calculate the sample mean, variance, probability mass function
as well as the histogram of B. Show B and all calculated quantities.

2. Using histogram modification, modify your image so that the resulting image has a histogram
that matches hp(l) as in 1 above. Show your image, the modified image, their histograms and
the matching point function. Briefly compare the modified image’s histogram to hp(l).

3. Do the processing I did in the “undoing example” on your image.

4. Uniform quantize your image using A = 4, 8, 16, 64. Show the quantized image, its histogram and
MSQE in each case.

5. Compand your image using A = 4, 8,16, 64. Show the quantized image, its histogram and MSQE
in each case. Compare the results to those obtained in 4.

6. pa(l) = [.1,0,.3,.2,0,0,.3,.1] and pg(k) = [.2,0,0, .1, 4,.3] for two images A and B. Calculate
a point function ¢(I) such that C(i,7) = g(A(4,7)) has histogram ho(l) that “matches” hp(l).
Assume all images have a total of 10 pixels. Calculate the histogram he (7).
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